Augmented Lagrangian optimization under fixed-point arithmetic
نویسندگان
چکیده
منابع مشابه
Augmented Lagrangian Methods and Proximal Point Methods for Convex Optimization
We present a review of the classical proximal point method for nding zeroes of maximal monotone operators, and its application to augmented Lagrangian methods, including a rather complete convergence analysis. Next we discuss the generalized proximal point methods, either with Bregman distances or -divergences, which in turn give raise to a family of generalized augmented Lagrangians, as smooth...
متن کاملFixed-Point Arithmetic Line Clipping
This algorithm supports line clipping against a rectangular window with edges parallel to the screen. The algorithm combines different partial solutions given in the bibliography such as implicit area codes, decision trees, line ends comparison, symmetry or avoiding redundant calculations, mixing them with fixed-point arithmetic, explicit calculation reusing and dynamic monitoring. It may work ...
متن کاملAugmented Lagrangian Algorithms under Constraint Partitioning
We present a novel constraint-partitioning approach for solving continuous nonlinear optimization based on augmented Lagrange method. In contrast to previous work, our approach is based on a new constraint partitioning theory and can handle global constraints. We employ a hyper-graph partitioning method to recognize the problem structure. We prove global convergence under assumptions that are m...
متن کاملFinite Element Solutions of Cantilever and Fixed Actuator Beams Using Augmented Lagrangian Methods
In this paper we develop a numerical procedure using finite element and augmented Lagrangian meth-ods that simulates electro-mechanical pull-in states of both cantilever and fixed beams in microelectromechanical systems (MEMS) switches. We devise the augmented Lagrangian methods for the well-known Euler-Bernoulli beam equation which also takes into consideration of the fringing effect of electr...
متن کاملAn augmented Lagrangian method for distributed optimization
We propose a novel distributed method for convex optimization problems with a certain separability structure. The method is based on the augmented Lagrangian framework. We analyze its convergence and provide an application to two network models, as well as to a two-stage stochastic optimization problem. The proposed method compares favorably to two augmented Lagrangian decomposition methods kno...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Automatica
سال: 2020
ISSN: 0005-1098
DOI: 10.1016/j.automatica.2020.109218